Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Utilizing micro‐computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry

Identifieur interne : 002802 ( Main/Exploration ); précédent : 002801; suivant : 002803

Utilizing micro‐computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry

Auteurs : Stefan Vandeweghe [Suède, Belgique] ; Paulo G. Coelho [États-Unis] ; Christian Vanhove [Belgique] ; Ann Wennerberg [Suède] ; Ryo Jimbo [Suède]

Source :

RBID : ISTEX:1E6CD012FB26894FF770FDFDEACE8D2E79392E12

Descripteurs français

English descriptors

Abstract

Although histology has proven to be a reliable method to evaluate the ossoeintegration of a dental implant, it is costly, time consuming, destructive, and limited to one or few sections. Microcomputed tomography (µCT) is fast and delivers three‐dimensional information, but this technique has not been widely used and validated for histomorphometric parameters yet. This study compared µCT and histomorphometry by means of evaluating their accuracy in determining the bone response to two different implant materials. In total, 32 titanium (Ti) and 16 hydroxyapatite (HA) implants were installed in 16 lop‐eared rabbits. After 2 and 4 weeks, the animals were scarified, and the samples retrieved. After embedding, the samples were scanned with µCT and analyzed three‐dimensionally for bone area (BA) and bone‐implant contact (BIC). Thereafter, all samples were sectioned and stained for histomorphometry. For the Ti implants, the mean BIC was 25.25 and 28.86% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 24.11 and 24.53% when measured with µCT. BA was 35.4 and 31.97% after 2 and 4 weeks for histomorphometry and 29.06 and 27.65% for µCT. For the HA implants, the mean BIC was 28.49 and 42.51% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 33.74 and 42.19% when measured with µCT. BA was 30.59 and 47.17% after 2 and 4 weeks for histomorphometry and 37.16 and 44.95% for µCT. Direct comparison showed that only the 2 weeks BA for the titanium implants was significantly different between µCT and histology (p = 0.008). Although the technique has its limitations, µCT corresponded well with histomorphometry and should be considered as a tool to evaluate bone structure around implants. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1259–1266, 2013.

Url:
DOI: 10.1002/jbm.b.32938


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Utilizing micro‐computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry</title>
<author>
<name sortKey="Vandeweghe, Stefan" sort="Vandeweghe, Stefan" uniqKey="Vandeweghe S" first="Stefan" last="Vandeweghe">Stefan Vandeweghe</name>
</author>
<author>
<name sortKey="Coelho, Paulo G" sort="Coelho, Paulo G" uniqKey="Coelho P" first="Paulo G." last="Coelho">Paulo G. Coelho</name>
</author>
<author>
<name sortKey="Vanhove, Christian" sort="Vanhove, Christian" uniqKey="Vanhove C" first="Christian" last="Vanhove">Christian Vanhove</name>
</author>
<author>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
</author>
<author>
<name sortKey="Jimbo, Ryo" sort="Jimbo, Ryo" uniqKey="Jimbo R" first="Ryo" last="Jimbo">Ryo Jimbo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1E6CD012FB26894FF770FDFDEACE8D2E79392E12</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jbm.b.32938</idno>
<idno type="url">https://api.istex.fr/document/1E6CD012FB26894FF770FDFDEACE8D2E79392E12/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F17</idno>
<idno type="wicri:Area/Istex/Curation">000F17</idno>
<idno type="wicri:Area/Istex/Checkpoint">000354</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000354</idno>
<idno type="wicri:doubleKey">1552-4973:2013:Vandeweghe S:utilizing:micro:computed</idno>
<idno type="wicri:Area/Main/Merge">002813</idno>
<idno type="wicri:Area/Main/Curation">002802</idno>
<idno type="wicri:Area/Main/Exploration">002802</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Utilizing micro‐computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry</title>
<author>
<name sortKey="Vandeweghe, Stefan" sort="Vandeweghe, Stefan" uniqKey="Vandeweghe S" first="Stefan" last="Vandeweghe">Stefan Vandeweghe</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö</wicri:regionArea>
<wicri:noRegion>Malmö</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Periodontology and Oral Implantology, Dental School, Faculty of Medicine and Health sciences, University of Ghent</wicri:regionArea>
<wicri:noRegion>University of Ghent</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Coelho, Paulo G" sort="Coelho, Paulo G" uniqKey="Coelho P" first="Paulo G." last="Coelho">Paulo G. Coelho</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biomaterials and Biomimetics, New York University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vanhove, Christian" sort="Vanhove, Christian" uniqKey="Vanhove C" first="Christian" last="Vanhove">Christian Vanhove</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Medical Imaging and Signal Processing, Faculty of Engineering and Architecture, University of Ghent</wicri:regionArea>
<wicri:noRegion>University of Ghent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö</wicri:regionArea>
<wicri:noRegion>Malmö</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jimbo, Ryo" sort="Jimbo, Ryo" uniqKey="Jimbo R" first="Ryo" last="Jimbo">Ryo Jimbo</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö</wicri:regionArea>
<wicri:noRegion>Malmö</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">101</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1259">1259</biblScope>
<biblScope unit="page" to="1266">1266</biblScope>
<biblScope unit="page-count">8</biblScope>
<date type="published" when="2013-10">2013-10</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apical part</term>
<term>Artifact</term>
<term>Biomaterials</term>
<term>Biomechanical testing</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bone architecture</term>
<term>Bone area</term>
<term>Bone morphometry</term>
<term>Bone response</term>
<term>Bone structure</term>
<term>Bone structures</term>
<term>Clin implant dent relat</term>
<term>Cortical bone</term>
<term>Dental implants</term>
<term>Different materials</term>
<term>Energy level</term>
<term>Gure</term>
<term>Histological</term>
<term>Histological section</term>
<term>Histological sections</term>
<term>Histology</term>
<term>Histomorphometry</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite implants</term>
<term>Image quality</term>
<term>Implant</term>
<term>Mass attenuation</term>
<term>Microcomputed tomography</term>
<term>Online</term>
<term>Online issue</term>
<term>Other hand</term>
<term>Pearson correlation ranks test</term>
<term>Research report figure</term>
<term>Slice thickness</term>
<term>Soft spaces</term>
<term>Threshold level</term>
<term>Threshold levels</term>
<term>Time points</term>
<term>Titanium</term>
<term>Titanium implant</term>
<term>Titanium implants</term>
<term>Titanium inserts</term>
<term>Tomography</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Apical part</term>
<term>Artifact</term>
<term>Biomaterials</term>
<term>Biomechanical testing</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bone architecture</term>
<term>Bone area</term>
<term>Bone morphometry</term>
<term>Bone response</term>
<term>Bone structure</term>
<term>Bone structures</term>
<term>Clin implant dent relat</term>
<term>Cortical bone</term>
<term>Dental implants</term>
<term>Different materials</term>
<term>Energy level</term>
<term>Gure</term>
<term>Histological</term>
<term>Histological section</term>
<term>Histological sections</term>
<term>Histology</term>
<term>Histomorphometry</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite implants</term>
<term>Image quality</term>
<term>Implant</term>
<term>Mass attenuation</term>
<term>Microcomputed tomography</term>
<term>Online</term>
<term>Online issue</term>
<term>Other hand</term>
<term>Pearson correlation ranks test</term>
<term>Research report figure</term>
<term>Slice thickness</term>
<term>Soft spaces</term>
<term>Threshold level</term>
<term>Threshold levels</term>
<term>Time points</term>
<term>Titanium</term>
<term>Titanium implant</term>
<term>Titanium implants</term>
<term>Titanium inserts</term>
<term>Tomography</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Histologie</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Although histology has proven to be a reliable method to evaluate the ossoeintegration of a dental implant, it is costly, time consuming, destructive, and limited to one or few sections. Microcomputed tomography (µCT) is fast and delivers three‐dimensional information, but this technique has not been widely used and validated for histomorphometric parameters yet. This study compared µCT and histomorphometry by means of evaluating their accuracy in determining the bone response to two different implant materials. In total, 32 titanium (Ti) and 16 hydroxyapatite (HA) implants were installed in 16 lop‐eared rabbits. After 2 and 4 weeks, the animals were scarified, and the samples retrieved. After embedding, the samples were scanned with µCT and analyzed three‐dimensionally for bone area (BA) and bone‐implant contact (BIC). Thereafter, all samples were sectioned and stained for histomorphometry. For the Ti implants, the mean BIC was 25.25 and 28.86% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 24.11 and 24.53% when measured with µCT. BA was 35.4 and 31.97% after 2 and 4 weeks for histomorphometry and 29.06 and 27.65% for µCT. For the HA implants, the mean BIC was 28.49 and 42.51% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 33.74 and 42.19% when measured with µCT. BA was 30.59 and 47.17% after 2 and 4 weeks for histomorphometry and 37.16 and 44.95% for µCT. Direct comparison showed that only the 2 weeks BA for the titanium implants was significantly different between µCT and histology (p = 0.008). Although the technique has its limitations, µCT corresponded well with histomorphometry and should be considered as a tool to evaluate bone structure around implants. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1259–1266, 2013.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>Suède</li>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Vandeweghe, Stefan" sort="Vandeweghe, Stefan" uniqKey="Vandeweghe S" first="Stefan" last="Vandeweghe">Stefan Vandeweghe</name>
</noRegion>
<name sortKey="Jimbo, Ryo" sort="Jimbo, Ryo" uniqKey="Jimbo R" first="Ryo" last="Jimbo">Ryo Jimbo</name>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
</country>
<country name="Belgique">
<noRegion>
<name sortKey="Vandeweghe, Stefan" sort="Vandeweghe, Stefan" uniqKey="Vandeweghe S" first="Stefan" last="Vandeweghe">Stefan Vandeweghe</name>
</noRegion>
<name sortKey="Vandeweghe, Stefan" sort="Vandeweghe, Stefan" uniqKey="Vandeweghe S" first="Stefan" last="Vandeweghe">Stefan Vandeweghe</name>
<name sortKey="Vanhove, Christian" sort="Vanhove, Christian" uniqKey="Vanhove C" first="Christian" last="Vanhove">Christian Vanhove</name>
</country>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Coelho, Paulo G" sort="Coelho, Paulo G" uniqKey="Coelho P" first="Paulo G." last="Coelho">Paulo G. Coelho</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002802 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002802 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1E6CD012FB26894FF770FDFDEACE8D2E79392E12
   |texte=   Utilizing micro‐computed tomography to evaluate bone structure surrounding dental implants: A comparison with histomorphometry
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022